Friction of hydrogels with controlled surface roughness on solid flat substrates.

نویسندگان

  • Shintaro Yashima
  • Natsuko Takase
  • Takayuki Kurokawa
  • Jian Ping Gong
چکیده

This study investigated the effect of hydrogel surface roughness on its sliding friction against a solid substrate having modestly adhesive interaction with hydrogels under small normal pressure in water. The friction test was performed between bulk polyacrylamide hydrogels of varied surface roughness and a smooth glass substrate by using a strain-controlled rheometer with parallel-plates geometry. At small pressure (normal strain 1.4-3.6%), the flat surface gel showed a poor reproducibility in friction. In contrast, the gels with a surface roughness of 1-10 μm order showed well reproducible friction behaviors and their frictional stress was larger than that of the flat surface hydrogel. Furthermore, the flat gel showed an elasto-hydrodynamic transition while the rough gels showed a monotonous decrease of friction with velocity. The difference between the flat surface and the rough surface diminished with the increase of the normal pressure. These phenomena are associated with the different contact behaviors of these soft hydrogels in liquid, as revealed by the observation of the interface using a confocal laser microscope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of surface roughness on steel-steel dry friction coefficient

The influence of surface roughness magnitude and direction on dry static friction coefficient between two similar steel samples has been studied through an experiment. A testing apparatus has been designed and fabricated to measure the friction coefficient for a few forms of surface asperity. According to the results of the experiments, dry friction coefficient is affected by both magnitude and...

متن کامل

Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime.

We studied the ability of surfactants to reduce friction by boundary lubrication for a bulk hydrogel sliding on a solid surface in an aqueous solution. A piece of negatively charged polyelectrolyte hydrogel was slid across solid surfaces with various levels of hydrophobicity, using a strain-controlled parallel-plate rheometer in water. A dramatic reduction in the sliding friction, especially in...

متن کامل

Effect of Roughness on the Microscale Friction of Hydrocarbon Films

To investigate polymer friction and the role of surface roughness on polymer tribology, microtribometry testing was performed using hydrocarbon films ranging in roughness from a molecularly smooth monolayer to extremely rough polymethylene coatings that were prepared on both the substrate (a flat silicon wafer) and the probe (a 6 mm borosilicate lens). The results show that the rough topography...

متن کامل

‌تأثیر سوخت های JP-10 و DMAZ بر اصطکاک لاستیک نیتریل و آلومینیوم با زبری های مختلف

One of the problems for use of rubber in various industries is surface tension at the surface of rubbers, which results in the crack on the surface, fracture of the rubber and reduces its life. These tensions are caused by contacting the rubber component with the metal surface and the friction between two surfaces. Roughness of the surface, the composition of the rubber compound, the environmen...

متن کامل

The contact mechanics of fractal surfaces.

The role of surface roughness in contact mechanics is relevant to processes ranging from adhesion to friction, wear and lubrication. It also promises to have a deep impact on applied science, including coatings technology and design of microelectromechanical systems. Despite the considerable results achieved by indentation experiments, particularly in the measurement of bulk hardness on nanomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 18  شماره 

صفحات  -

تاریخ انتشار 2014